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Abstract: Resource-conserving technologies are widely reported to benefit both the
people who adopt them and the environment. Evidence for these “win-win” claims
comes largely from modeling or nonexperimental designs and mostly from the energy
sector. In a randomized trial of water-efficient technologies, the ex ante engineering
estimate of water use reductions was three times higher than the experimental esti-
mate, a divergence arising from engineering and behavioral reasons other than the re-
bound effect. Using detailed cost information and experimentally elicited time and
risk preferences, we infer that the private welfare gains from adoption are, on average,
negative, implying no “efficiency paradox.”
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TO ADDRESS NATURAL RESOURCE SCARCITY and externalities, economists em-
phasize property rights and prices. In contrast, scientists, engineers, and policymakers
are more likely to emphasize standards and technologies. In particular, they encourage
the adoption of input-efficient technologies: energy-efficient technologies to mitigate
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climate change and reduce pollution (e.g., Field et al. 2014), water-efficient technol-
ogies to mitigate water scarcity and facilitate climate change adaptation (e.g., Califor-
nia Natural Resources Agency 2009; FAO 2014), fuel-efficient cookstoves to mitigate
fuelwood scarcity and the ecosystem-damaging effects of wood extraction (e.g., Global
Alliance for Clean Cookstoves), and precision technologies to mitigate the ecosystem-
damaging effects of agriculture and forestry (e.g., Balmford et al. 2005).

Proponents often refer to input-efficient technologies as “win-win” because, in addition
to reducing negative externalities, the technologies also reduce expenditures in resource-
intensive goods and services, a reduction that is claimed to improve the welfare of hu-
mans who adopt the technologies (e.g.,McKinsey andCo 2009). In the face of low adop-
tion rates, these claims raise a variety of “product adoption puzzles,” which posit that
consumers fail to adopt products with benefits that exceed their costs. These puzzles,
or “efficiency paradoxes,” have been identified in a variety of input-efficient technology
contexts, including energy efficiency (“the energy efficiency gap”; Allcott andGreenstone
2012; see also Jaffe and Stavins 1994), water efficiency (“the water efficiency gap”; Golin
et al. 2015), and improved cookstoves (Hanna et al. 2016). To explain these puzzles,
and justify interventions to subsidize technology adoption, proponents often point to
cognitive and market barriers (Allcott and Greenstone 2012; Borgeson et al. 2012;
Sallee 2014; Allcott et al. 2015; Houde and Myers 2019).

To expand the experimental evidence base on the environmental and economic im-
pacts of input-efficient technologies, we report on a randomized controlled trial (RCT)
of water-efficient technology adoption (Alpizar et al. 2021). To our knowledge, it is the
first RCT of an input-efficient technology outside of the energy context.We (1) assessed
whether the predicted effect of input-efficient technology adoption using a prospective
engineering approachmatches the estimated effect in the RCT; (2) explored the reasons
for any divergence between the engineering estimate and the experimental estimate; and
(3) assessed whether there is a “efficiency paradox,” whereby the marginal benefits from
adoption exceed themarginal costs by a largemargin, on average, but potential users nev-
ertheless fail to adopt the technologies.

Economists have largely been skeptical that input-efficient technologies are as im-
pactful, environmentally or economically, as proponents claim (Metcalf and Hassett
1999; Greening et al. 2000; Gillingham et al. 2016). Prospective “engineering” ap-
proaches (e.g., US Government Accountability Office 2000; Cooley et al. 2009; Fidar
organizations that supported the project and provided water consumption data, and all the Costa
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inar participants at the AERE summer conference, the Allied Social Science Associations
(ASSA) annual conference, the Society of Benefit-Cost Analysis conference, Georgia Institute
of Technology, Inter-American Development Bank, Johns Hopkins University, University of
Cambridge, University of Maryland Baltimore County, University of Minnesota and University
of Texas at Austin.
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et al. 2010) have long been criticized for overly optimistic assumptions about technol-
ogy field performance and about human preferences and behavioral responses (Hirst
and Goeltz 1984, 1985; Sebold and Fox 1985; Hirst 1986; Metcalf and Hassett
1999). Retrospective approaches that use field data often find a large gap between re-
alized savings and the savings predicted by engineering approaches (e.g., Houde and
Myers 2019; Burlig et al. 2020; Davis et al. 2020). Yet much of the field data are from
nonexperimental designs, such as before-after designs (e.g., Davis 2008; Lee et al.
2011) or with-without designs (e.g., Mayer et al. 1999; Kenney et al. 2008; Brooks
et al. 2016). These designs are challenged by biases from unobservable differences
across pre- and postadoption periods and among adopters and nonadopters (Gilling-
ham and Palmer 2014). Nonexperimental difference-in-differences designs (e.g., Ben-
near et al. 2012; Davis et al. 2014; Pfeiffer and Lin 2014; Allcott and Greenstone
2017) and machine-learning imputation designs (Christensen et al. 2021) reduce such
biases. Yet they are much rarer and still may not be able to adequately control for
time-varying confounders that drive technology adoption and resource use.

Field experiments improve on engineering approaches by using field data in natu-
rally occurring contexts, and they complement observational designs by requiring fewer
assumptions for causal inference. Despite those advantages, experimental designs that
create random variation in input-efficient technology adoption are rare.1 Most designs
randomize biomass cookstoves and, overall, yield ambiguous answers about the effect
of improved efficiency on fuel use (Burwen and Levine 2012; Bensch and Peters 2015;
Rosenbaum et al. 2015; Hanna et al. 2016; Pattanayak et al. 2019; Berkouwer and
Dean 2022; of the six cited studies, only two report input reductions with confidence
intervals that exclude zero).2 Two field experiments that have been implemented out-
side the cookstove context fail to detect any effects or find only a modest effect size
(Carranza and Meeks 2016; Fowlie et al. 2018). Furthermore, some field experiments
have been criticized by technology proponents for low compliance rates; see, for exam-
ple, the critique of Fowlie et al. (2018) by NASCSP (n.d.) or the critique of Hanna
et al. (2016) by Grimm and Peters (2012).
1. We focus on input-efficiency RCTs that observe changes in input use. We therefore ex-
clude (i) experiments that use self-reported or imputed, rather than observed, changes in input
use; (ii) experiments that do not isolate the effects of adopting more efficient technologies on
input use (e.g., changes to prices, in-home displays, audits and other forms of information trans-
fers, or peer comparisons, which can affect input use through multiple channels); and (iii) ex-
periments that test technologies that use different inputs (e.g., switch people from biomass
stoves to solar stoves).

2. Rosenbaum et al. has a small sample size and does not report standard errors of their es-
timated effects. Pattanayak et al. report on an intervention that included stoves with improved
efficiency and stoves that used alternative fuels, making the contribution of improved efficiency
on fuel use uncertain.
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Moreover, the experimental data come from the energy sector and, except for fuel-
efficient cookstove experiments and an efficient light bulb experiment, from high-
income nations. Thus, published experimental results may not generalize to other re-
sources or countries. This concentration of experimental evidence is a concern given the
wide range of sectors in which input-efficient technologies are promoted and the sub-
stantial funds invested in promoting these technologies in low and middle countries,
where energy and water use per dollar of gross domestic product is high3 (e.g., the In-
ternational Finance Corporation reports more than US$307 billion of “investment po-
tential” in improved industrial energy efficiency alone in low- andmiddle-income nations
and reports that 110 countries committed to energy-efficient investments as part of their
strategy to address climate change; International Finance Corporation 2016).

Improving our understanding of the role that technological improvements could play
in achieving more efficient water use is of particular relevance given that water scarcity is
increasing as a result of a changing climate (Famiglietti 2014; Schewe et al. 2014; Gos-
ling and Arnell 2016). Increasing the efficiency of water use is not just relevant for the
welfare of individual households: it is a key component of adapting to climate change.
More efficient water usemeansmore water available for other purposes and less pressure
put on aquifers and reservoirs (Hallegatte 2009; Toole et al. 2016; Alpízar et al. 2019).
The concentration of evidence on the performance of energy-efficient technologies has
contributed to a better understanding of how technology can help mitigate climate
change. Similar evidence is needed on the role that technological improvements (like im-
proved cookstoves and water-efficient fixtures) can play in an adaptation to climate
change strategy.

Our experimental trial took place in the middle-income nation of Costa Rica. Like
other Latin American governments,4 the Costa Rican government has promoted the
use of water-conserving technologies (Lara S. 2015; Arias 2016). In contrast to prior
experiments on input-efficient technologies, nearly 100% of the treatment group took
up the technology, thereby mitigating concerns about high rates of noncompliance.
Moreover, we developed detailed data on adoption costs, collected survey data on be-
liefs and behaviors, and elicited and jointly estimated time and risk preferences. With
these economic data, we can evaluate the plausibility of a product adoption puzzle in
more depth than prior studies.
3. See https://data.worldbank.org/indicator/ER.GDP.FWTL.M3.KD?most_recent_value
_desc5true; https://data.worldbank.org/indicator/EG.GDP.PUSE.KO.PP?most_recent_value
_desc5true.

4. Some Latin American governments have invested in water conserving technologies and/or
advised their citizens to use these products. See https://www.pucp.edu.pe/climadecambios
/noticias/sedapal-anuncio-programa-de-ahorro-de-agua-con-productos-que-disminuyen-el
-consumo-hasta-en-30/, https://www.acueducto.com.co/wps/portal/EAB2/Home/ambiente
/agua/ahorro/, and http://www.quitoinforma.gob.ec/2019/10/24/plan-de-reduccion-de
-consumos-de-agua-con-ahorradores/.

https://data.worldbank.org/indicator/ER.GDP.FWTL.M3.KD?most_recent_value_desc=true
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https://data.worldbank.org/indicator/EG.GDP.PUSE.KO.PP?most_recent_value_desc=true
https://data.worldbank.org/indicator/EG.GDP.PUSE.KO.PP?most_recent_value_desc=true
https://www.pucp.edu.pe/climadecambios/noticias/sedapal-anuncio-programa-de-ahorro-de-agua-con-productos-que-disminuyen-el-consumo-hasta-en-30/
https://www.pucp.edu.pe/climadecambios/noticias/sedapal-anuncio-programa-de-ahorro-de-agua-con-productos-que-disminuyen-el-consumo-hasta-en-30/
https://www.pucp.edu.pe/climadecambios/noticias/sedapal-anuncio-programa-de-ahorro-de-agua-con-productos-que-disminuyen-el-consumo-hasta-en-30/
https://www.acueducto.com.co/wps/portal/EAB2/Home/ambiente/agua/ahorro/
https://www.acueducto.com.co/wps/portal/EAB2/Home/ambiente/agua/ahorro/
http://www.quitoinforma.gob.ec/2019/10/24/plan-de-reduccion-de-consumos-de-agua-con-ahorradores/
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We find that the conventional engineering estimate of the technologies’ impact on
water use (28% reduction) is more than three times larger than the experimental es-
timate (9% reduction). Nearly half of that divergence can be closed by using more re-
alistic assumptions about installation and actual, rather than laboratory-rated, tech-
nology performance. Similar divergences between predicted and actual performance
have been reported in other low- and middle-income contexts for energy technologies
(e.g., Bensch and Peters 2015; Hanna et al. 2016; Rom and Günther 2019; Davis et al.
2020).

Yet even after those adjustments, the engineering estimate is still more than double
the experimental estimate. Using survey data and supplemental analyses, we present
evidence that the remaining divergence may result from post-installation disadoption
of the technologies and from post-adoption behavioral changes that are often ignored
in engineering and economic models: specifically, some households run the water lon-
ger as a result of non-efficiency-related changes in performance that are concomitant
with the improvement in the technology’s efficiency. Behavioral responses from changes
in technology performance that are concomitant with improvements in efficiency have
been flagged by scholars for greater scrutiny (Gillingham et al. 2016). For example, im-
provements in air conditioning efficiency oftenmean that the system runs less frequently
to achieve a given temperature, which may affect humidity levels in the home, which in
turn induces users concerned about humidity to run the system more frequently than
engineers predict. This type of behavioral response is unrelated to the price elasticity
of the services provided and thus is different from the rebound effect that occupies so
much of economists’ attention in the context of input efficiency.

Whether a resource-conserving technology improves the welfare of adopters will
depend not just on the technology’s impacts on resource use but also on assumptions
about adoption costs and the time and risk preferences of the potential adopters. For
example, to evaluate the economic impacts of adopting input-efficient technologies,
engineers typically use a net present value analysis that assumes risk neutrality and dis-
count rates below 10% (e.g., McKinsey and Co. 2007). These assumptions contrast
with a large body of economics literature which suggests that many decision-makers
are risk averse and have personal discount rates well above 10% (Matousek et al.
2020), assumptions that would typically make the adoption of input-efficient technol-
ogies look less favorable.

The combination of the engineering estimate and the economic assumptions typ-
ically applied by engineering analyses (e.g., no risk aversion, low discount rates) implies
large welfare gains from adopting the technologies, that is, a product adoption puzzle.
In contrast, we find no welfare gains in an analysis that incorporates the experimental
estimate of impact, subjective discount rates, and risk aversion and adopter uncertainty
about technology life span and performance. Our study thus also contributes to the
small set of experimental studies that estimate the private welfare effects of input-
efficient technology adoption (Carranza and Meeks 2016; Fowlie et al. 2018).



176 Journal of the Association of Environmental and Resource Economists January 2024
In the next section, we describe the study context. In section 2, we present the pro-
spective engineering estimate and welfare calculation. In section 3 and section 4, we
present the experimental design, the experimental estimate, and revised welfare calcu-
lations. In section 5, we explore potential reasons for the divergence between the exper-
imental and engineering estimates. Section 6 concludes.

1. STUDY CONTEXT

1.1. Recruitment of Study Communities

The RCT took place in rural communities in western Costa Rica (fig. 1) where over-
exploitation of aquifers is a concern (Imbach et al. 2015; Lyra et al. 2017). When com-
munities pump from the aquifers, they generate two externalities: a stock externality,
where groundwater users do not fully internalize the continuation value of the re-
source and extract too quickly, and a pumping (extraction) cost externality, where
groundwater users do not fully internalize how their own pumping lowers groundwa-
ter levels, which affects the costs of pumping for other users.

The RCT was part of a larger Canadian government–funded research project on
climate change adaptation and water scarcity in Central America. In about 85% of com-
munities in the region, households obtain their water from community water distribu-
tion systems rather than private wells. About half of the community systems are run
by a government agency and the other half by community-based water management
Figure 1. Study context and design. Left panel: Study site in the provinces of Guanacaste
(light gray) and Puntarenas (dark gray) with study communities indicated by dots.Middle panel:
Less-efficient, status quo technologies (top) are replaced with more-efficient, new technologies
(bottom), sometimes requiring additional plumbing parts to complete the installation. Right
panel: Experimental design; hh 5 household. Bottom panel: Study time line.
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organizations (CBWMOs; Madrigal et al. 2011; Madrigal-Ballestero and Naranjo
2015). In 2013, a research team from the Tropical Agricultural Research and Higher
Education Center (CATIE) conducted a survey among the 81 CBWMOs in a subre-
gion where aquifer pumping was of greatest policy concern. CATIE is a widely known,
nongovernmental organization that implements and studies development and environ-
mental programs throughout Central America. In 2014, CATIE staff used the survey
data to select CBWMOs that measured household water use with meters and applied
variable rate pricing (i.e., households save money if they reduce water use). Staff called
66 CBWMOs that met these criteria and asked their management committees if
(1) they had monthly water records of households dating back to 2012 and would
share these data by sending them to CATIE and (2) they were interested in having
the project team install water-efficient technologies in a randomly chosen subset of
their residential customers and in sharing the post-installation water data. To meet
the target sample size (see power analysis, app. A1), the team selected nine communi-
ties from the 10 that met the criteria. The use of water meters and variable pricing in
these communities, in conjunction with supportive CBWMO management, provided
the conditions to measure the impact of the technologies.

1.2. Treatment Intervention

Households were offered water-efficient technologies installed by professional plumb-
ers: (1) 1.5 gpm (gallon per minute) shower heads and (2) 1 gpm faucet aerators for
bathroom and kitchen faucets (fig. 1). These technologies are simple devices that mix
water and air, thereby reducing the flow of water, saving water, and lowering water
bills. Aerators are also supposed to reduce water splashing in the basin. No surveyed
home in the study area had technologies with these levels of efficiency prior to the ex-
periment. Although the technologies were sold in some retail stores in Costa Rica, the
study communities did not have such stores nearby. After installation, the team took
away the fixtures that were replaced (all households consented to this installation and
removal). Dishwashers were not used in the study region. Although almost all homes
had toilets and manual washing devices, CATIE engineers believed that switching out
these technologies was not cost-effective (for either private or social benefits).

2. PROSPECTIVE ENGINEERING CALCULATIONS

2.1. Effect of Technology Adoption on Water Use

The CATIE team first calculated a basic engineering estimate of impact (BEE). The
approach follows the procedures of other prospective approaches (Fidar et al. 2010;
Bennear et al. 2012; Maddaus et al. 2017) but improves on them by using field data
from the study population rather than secondary data from a broader population. The
team used field-derived data to avoid underestimating the status quo technology per-
formance, a problem noted in other contexts (Davis et al. 2014). If CATIE had used
secondary data instead, the BEE would have been 25% larger. However, a disadvantage
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of CATIE’s approach using primary data is that several inputs for the BEE calculation
come from small samples (see below). Thus, the sample averages used to calculate the
BEEmight deviate from the corresponding averages in the broader experimental sample.

The BEE calculation uses three inputs: (i) an estimate of the flow rates with the
new technologies, (ii) an estimate of the flow rates with status quo technologies, and
(iii) an estimate of the percentage of water consumed through each fixture with respect
to the total consumption of the household (e.g., 10% of water consumed by households
flows through shower fixtures). For the first input, the field team followed the standard
engineering approach of using the laboratory-rated flows as they appeared on the prod-
uct labels (1.5 gpm shower heads and 1 gpm faucet aerators for bathroom and kitchen
faucets). The data for the other two inputs were gathered from a random sample of
households (n 5 67) of the control group in the nine communities. To measure flow,
the team measured the time it took to fill a 3-liter container from each of the fixtures.
The fixture valves were opened to their maximum flow, as is required in laboratory per-
formance rating trials (and thus comparable to the laboratory-rated flow of the new
technologies). For the third input about fixture contributions to total water use, the
team randomly selected 23 of the 67 households and recorded a baseline reading on
the house meter and installed micrometers on the shower, kitchen, and bathroom fix-
tures. At the end of one month, the team collected the micrometer data and another
reading from the house meter. The sample size and method used to collect each input
appear in table 4, panel A. Using these three measures, one can calculate the BEE:

o
3

i51
Wi ⋅Fi, (1)

where i is the fixture category (shower, bathroom, or kitchen fixture),W is the average
percentage of water that runs through fixture category i, and F is the percentage change
in the average flow rates with and without technology installed in fixture category i. The
BEE is 27.7%: in other words, for a randomly selected household, the expected reduc-
tion in water use from adopting water-efficient technologies is 27.7%, which would be
6.77 m3 (cubic meter) per month in the experiment’s posttreatment period. This ex-
pected reduction is in line with estimates from the US Environmental Protection
Agency WaterSense program, which estimates that the average American household
can save 32% on water costs by retrofitting with water-efficient fixtures (EPA Water-
Sense 2017).

2.2. Effect of Technology Adoption on Household Welfare

Engineers typically evaluate the economics of technology adoption by using a net pres-
ent value approach (Newnan et al. 2017); see, for example, the Alliance for Water Ef-
ficiency Tracking Tool v3.0. Using this approach, we make standard assumptions: the
new technologies affect water use by an amount equivalent to the BEE and last for the
manufacturer’s advertised product life span (10 years), and consumers are risk neutral
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and have a discount rate of 7%. The same discount rate was used in a widely cited
study by McKinsey and Co. (2007) to estimate the private returns to input-efficiency
investments for abating greenhouse gas emissions. To estimate the private costs of in-
stallation, we use retail prices of the technologies and assume an installation time of
one hour multiplied by a prevailing wage rate. We calculate a private installation cost
of US$25.99 per household (see app. A2 for details). Note that water-efficient tech-
nologies are not known to provide any cobenefits, unlike, for example, fuel-efficient
cookstoves whose adoption may also affect health in addition to reducing fuel use.
Based on the engineering assumptions, the net present value of technology adoption
is US$220. For comparison, a household that monthly consumes 25 m3 spends on
average US$14,5 and the daily minimum wage of an unskilled worker in Costa Rica
in 2015 was roughly US$18.21.6 Given that no households had the technologies prior
to the experiment, the estimated net present value implies a product adoption puzzle.

3. EXPERIMENTAL DESIGN

Figure 1 (right panel) illustrates the experimental design (approval was obtained from a
US university’s institutional review board). The communities reported 2,246 billed cus-
tomers in March 2015. Based on the pretreatment billing data and a pretreatment field
visit, 348 customers were eliminated because they had zero consumption between De-
cember 2014 and March 2015 (assumed vacant), shared a water meter with another
house, or were commercial establishments. The exclusion exercise left 1,898 households.

To contact these households, CATIE had four teams, each with an interviewer and
a plumber. Interviewers had bachelor’s degrees and survey experience and were trained
to implement the randomization protocol. The four teams, overseen by a field man-
ager, went to the nine communities sequentially. Communities in rural Costa Rica do
not have maps with the location of houses and houses are not numbered. Thus, to
facilitate the randomization procedure and ensure measurement fidelity over time,
CATIE created community maps with the location of all houses and placed identifi-
cation number labels on every water meter in the community. Using the community
maps, CATIE divided the community into four equally populated sectors and as-
signed each team to one of them. Interviews were conducted using a tablet.

The team was able to contact 1,346 heads of households. In contrast to the con-
tacted households, the uncontacted households used, on average, 13.8% less water per
month in the pretreatment period. The interviewer read a short script that comprised
5. The CBWMOs charge a fixed water price per month and a marginal water price per cubic
meter. The national public utility regulator in Costa Rica sets the national price schedule but
CBWMOs usually charge prices lower than the schedule.

6. The daily salary of an unskilled worker in Costa Rica in 2015 was ₡9,599 (Ministerio de
Trabajo y Seguridad Social 2015) or US$18.21 using the exchange rate at the time (1 USD 5
527 CRC).
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(1) an introduction of team members, (2) information from a CATIE climate study
about recent and future weather changes in the region and the implications of these
changes for water conservation, (3) a description of the technologies and a video of
them in use, and (4) an offer to install the water-efficient technologies for free if the
home was selected at random. Households were only randomized to a treatment
arm if a head of household indicated he or she was interested in accepting the installed
technologies for free that same day.

A key feature of the design is that all households received the same marketing script,
which allows us to isolate the technologies’ effect onwater use separate from any effect from
marketing information that refers to drought and water conservation; rarely do market-
ing materials for input-efficient technologies fail to mention the motivations for conserv-
ing inputs. By giving the script to both treated and control groups, the effect of the script
is the same, in expectation, in both groups under the assumption that the effect is additive
(i.e., the technology is not a substitute for other responses that may arise from the script).
The script and household survey questionnaires are available in the online appendix.

Of the 1,346 households, 1,310 agreed to have the technologies installed should they
be selected to receive them. Among these households, 395 were visited inMay 2015 and
the other 915 in June 2015. They were randomized into one of three treatment arms:

1. Control group: Residents who agreed to install the technologies but did
not receive the technologies.

2. No-bonus group: Residents who agreed to install the technologies and
received the technologies.

3. Bonus group: Residents who agreed to install the technologies and re-
ceived the technologies. After they had agreed to install the technologies,
they were then offered a performance bonus of US$38 if they still had
all technologies installed when the team returned unannounced sometime
in the following six months.

In our main analysis, we combine the two installation arms, which is the most gen-
erous framing for the technology’s impact. We also provide results using only the no-
bonus group. The bonus group treatment is the focus of another study. Randomization
was implemented by having the resident put her hand in an opaque bag with three col-
ored chips inside, one for each treatment arm.

Summary statistics by treatment condition are in table 1. Treatment assignment
does not predict water use in the year before the treatment (table 2, col. 1). The num-
ber of each type of technology installed appears in table A1.

3.1. Compliance with Treatment Assignment

The plumber was able to install at least one efficient technology fixture in all but six
households (991% success). We retain these six treated households in the analysis.
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To determine if any control household adopted the technologies in the posttreatment
period, we conducted an audit of a random sample of 63.4% of the control group three
to four months after treatment assignment. None of the households had the technol-
ogies, and thus we assume zero noncompliance in the control group. To assess whether
disadoption at t > 0 played a role in any divergence between the engineering and ex-
perimental estimates, CATIE conducted two audits of treated households (Novem-
ber 2015, October 2016). Those data are presented in section 5.
3.2. Estimand and Estimator

In the analysis, we usemeter data onmonthly water consumption fromMay 2014 through
September 2016. Thus, depending on a household’s date of randomization, the panel
comprises 12–13 months of pretreatment water consumption and 15–16 months of
posttreatment consumption.

With less than 1% noncompliance at installation, we believe our design allows us to
estimate the average treatment effect (ATE) of water-efficient technology adoption on
monthly water use over a 16-month period among households that met the inclusion
criteria. Given potential disadoption at later dates, this estimand is not the same as the
ATE of adopting and keeping the technology installed for the entire posttreatment
period. Although prior experimental studies of input efficiency do not explicitly con-
sider disadoption, technology disadoption is often found when researchers look for it.
For example, more than half of households who adopted compact fluorescent light
bulbs in Kenya (Figueroa 2016), fuel-efficient cookstoves in India (Hanna et al. 2016),
Table 1. Summary Statistics by Treatment Condition

Treated Control All

Variable Mean SD Mean SD Mean SD

Number of HH members 3.67 1.78 3.57 1.73 3.64 1.77
Number of showers at home 1.03 .30 1.03 .36 1.03 .32
Number of kitchen faucets at home .77 .46 .79 .43 .78 .45
Number of bathroom faucets at home .58 .58 .65 .62 .61 .59
Owns home .87 .33 .88 .33 .87 .33
Years in the same home 18.24 15.31 18.61 16.29 18.37 15.64
Earns less than ₡250,000 .65 .48 .65 .48 .65 .48
Completed secondary school .27 .44 .27 .45 .27 .44
Participated in prior two CBWMO assemblies .39 .49 .40 .49 .39 .49
Pretreatment water consumption (m3) 24.85 14.17 24.41 13.57 24.7 13.97
Observations 870 440 1,310
Note. In May 2015, the official monthly minimum wage for unskilled workers was ₡286,467 or US$544
(Ministerio de Trabajo y Seguridad Social 2015). Pretreatment water consumption corresponds to the pe-
riod May 2014–April 2015. HH 5 household.
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antimalarial bed nets in Uganda (Clark et al. 2016), and conservation agriculture prac-
tices in Ghana, South Africa, and Zambia (Giller et al. 2009) subsequently stopped
using the technologies. No technology was displaced by a superior technology—house-
holds just reverted to the status quo technology. If there is technology disadoption in our
study context (a form of noncompliance), our target estimand the ATE of adoption can
also be interpreted as the intent to treat effect (ITT) of adopting the technologies and
keeping them installed for the entire posttreatment period.

To estimate the treatment effect, we use a random-effects panel data estimator
with monthly water consumption data in cubic meters:

cit 5 β0 1 β1 ⋅ treatedit 1 communityk 1 install teamj 1 montht 1 ei 1 mit, (2)

where cit is the monthly water consumption in the ith household in month t and treatedit
is a treatment dummy variable that switches from 0 to 1 in the month after a treated
household installs the technology package and stays equal to 1 for these households
in the posttreatment period. Given the block randomization, the estimator includes
dummy variables for the blocking variables (community, installation team). To increase
the precision of the estimate, it also includes dummy variables for the month.

4. EXPERIMENTAL RESULTS

4.1. Effect of Technology Adoption on Water Use

Column 2 in table 2 reports the estimated treatment effect: –2.21 m3. In the post-
treatment period, the control group consumed on average 24.42 m3 of water per
month (SD 5 16:34), which implies that the treatment reduced average monthly
water use by 9.1%, or about 0.14 SD. As a robustness check we include other spec-
ifications in columns 3–7. The panel is unbalanced, with 4.7% of the sample having
some missing monthly water consumption. Using the balanced panel only we obtain
similar results: –2.17 m3, or a reduction of 8.8% (col. 3). Results are almost the same if
we only use the control group and the treatment arm that did not receive the bonus
(–2.24 m3, or a reduction of 9.2%; see col. 4), or if we were instead to use a cross-sectional
ordinary least squares (OLS) regression estimator using the averagemonthly posttreatment
consumption as the dependent variable and, as covariates, the blocking variables and aver-
age monthly pretreatment consumption (–2.21 m3, or a reduction of 9.0%; see col. 7). If
instead we use a fixed effects model (col. 6), we obtain the same results: –2.23 m3, or a
reduction of 9.1%. However, this model is less efficient.

Our estimated reduction in water use compares favorably with the estimated reduc-
tions from behavioral interventions that aimed to reduce residential water consump-
tion. Jessoe et al. (2021) find that the provision of three different versions of home
water reports reduced average consumption by 4%–5% during the treatment year,
but no effect could be detected five months after the treatment period. In two reviews
of field experiments that use social norm–based interventions to reduce residential
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water use (Nauges and Whittington 2019; Jessoe et al. 2021), the estimated reduc-
tions range from 2% to 5%. In order to compare our intervention with a price instru-
ment, we would need the price elasticity of demand for household water consumption,
which unfortunately is not available for Costa Rica. Nauges and Whittington (2010)
find that despite substantial heterogeneity, most studies of own-price elasticity of water
demand for private consumption in developing countries are in the range of –0.3 and
–0.6. That range implies that a price increase of between 15% and 30% would be nec-
essary to reduce water consumption by 9.1%.

Recall that the engineering estimate (BEE) is 27.7% (–6.77 m3), which is more
than three times larger than the experimental estimate. The BEE also assumes that
the treatment effect materializes instantly and stays constant over time. To investigate
these assumptions, we estimate the average treatment effects by month before and af-
ter installation (fig. 2; see app. A3 for details). The estimated effect is around zero in
the months before treatment assignment and then becomes negative (–2.95 m3) in the
first month after treatment, consistent with the engineering assumption of immediate
effects. Whether the effect is constant over time is not easily discerned from the figure.
We test the hypothesis that the monthly effects after installation are equal and reject it
(p < :001). To differentiate a trend in the treatment effect from time-varying effects
moderated by environmental or economic conditions (e.g., seasonal changes in water
use), we tested the null hypothesis of zero difference between the average estimated
effect in the three-month period immediately after treatment assignment and in the
same three months in the following year. The difference between the two estimates
is imprecisely estimated, but the point estimate is negative, implying that, if the treat-
ment effect is changing over time, it is waning: –0.90 m3, 95% CI [–2.10, 0.30]. We
did the same analyses using only the control group and the treatment arm that did not
receive the bonus and obtain similar results (see fig. A2).
4.2. Effect of Technology Adoption on Household Welfare

Recall that a conventional engineering net present value calculation based on the BEE im-
plied a product adoption puzzle (table 3, row 1). We revise the underlying assumptions
of the conventional engineering net present value based on the BEE in the following
ways:
1. Impact assumption: Instead of using the BEE, we use the experimental
estimate of the ATE;

2. Life span assumption: Instead of assuming that the product lasts for the
period of the manufacturer’s limited warranty, we use the average expected
life span reported by households in the 2016 survey (∼16 months after
installation). To elicit treated household beliefs about expected life span,
households were asked to allocate 10 chips to eight different life spans
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(≤2 years, 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, ≥9 years);
and

3. Installation cost assumption: Instead of assuming trouble-free installation
according to manufacturer guidelines, we use detailed field data on the
materials required for the installations and calculate a more realistic
installation cost estimate of US$36.23, which is 39% higher than the
trouble-free installation (for example, installation frequently required
additional materials to retrofit the new technologies onto the old plumbing
systems).

These changes in assumptions reduce the net present value of technology adoption by
98% (table 3, rows 2, 3, and 4): from US$220.12 to US$5.02, which is roughly 30% of
the daily minimum wage of an unskilled worker in Costa Rica in 2015. Most of that
reduction (77%) arises from the change in the impact assumption, and the rest from
the change in the life span and cost assumptions.

Next, we incorporate more realistic assumptions about uncertainty and household
risk and time preferences into the calculation of household welfare. We use the risk
and time preference parameter estimates from Bernedo Del Carpio et al. (2022), which
were experimentally elicited using a double multiple price list design (Andersen et al.
Figure 2. Estimated treatment effects per month (m3). Installation happens in month 0. The
dots indicate the estimated treatment effects in each month, while the gray lines represent the
95% confidence intervals.
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2008) and a 2014 sample of nearly 500 individuals from 30 communities in the exper-
imental study region (including four communities from this RCT). The participants
made decisions both as individuals and as couples with their household partners. Pref-
erences were best captured by a rank dependent utility (RDU) model with exponential
discounting. Like the expected utility model (EUT), the RDUmodel permits risk aver-
sion to the variability of payouts. In contrast to EUT, RDU also permits probability
weighting. For the study sample, both individuals and couples overweight the proba-
bility of the best outcome, on average. Because decisions to purchase water-efficient
technologies may be made by either individuals or couples, we use the parameter esti-
mates of both individuals’ and couples’ preferences.

To develop realistic assumptions about sources of uncertainty, we selected three
contextual parameters that we believe are most relevant to the adoption decision
and are uncertain at the time of technology purchase: future water prices, technology
life span, and technology performance. Each parameter is assumed to have a probabil-
ity distribution. We use eight possible future scenarios, which are calculated using
combinations of the 5th and 95th percentiles of the distribution of each source of un-
certainty. We assume that each of the eight scenarios has the same objective probabil-
ity of occurrence (12.5%). Assuming that decision-makers are optimistic probability
weighters and applying the probability weighting parameter estimates from Bernedo
Table 3. Expected Welfare Gain from Technology Adoption

Assumptions

Impact Life Span Installation Cost Uncertainty d r
Probability
Weighting

Present Value
(USD)

1. BEE Warranty Trouble free No .07 0 No 220.12
2. ATE Warranty Trouble free No .07 0 No 55.45
3. ATE Reported Trouble free No .07 0 No 15.26
4. ATE Reported Field data No .07 0 No 5.02
5. ATE Reported Field data Yes .30 0 No (10.47)

.44 0 (16.17)
6. ATE Reported Field data Yes .30 .81 No (21.67)

.44 .77 (22.84)
7. ATE Reported Field data Yes .30 .81 Optimistic (15.45)

.44 .77 (17.95)
Note. BEE is the basic engineering estimate (sec. 2). ATE is the average treatment effect estimate (table 2).
The trouble-free installation cost assumes that the only cost of installation is the technology package and one
hour of time. The field data include additional costs (see app. A2). Uncertainty arises from variance in the life
span of the technology, the water price growth rate, and the impact of the technology. The value of the discount
rate (d) and constant relative risk aversion coefficient (r) are either based on convention (d 5 0:07, r 5 0) or
elicited in a field experiment for both individuals (d 5 0:30, r 5 0:81) and couples (d 5 0:44, r 5 0:77).
See main text for details.
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Del Carpio et al. (2022), we calculate the perceived probability weights in the RDUmodel
for the eight scenarios as: 49.93%, 9.60%, 7.21%, 6.24%, 5.83%, 5.79%, 6.22%, and 9.17%
(52.44%, 8.09%, 6.16%, 5.44%, 5.22%, 5.39%, 6.15%, and 11.10% for couples).

To construct a welfare measure that incorporates uncertainty and people’s prefer-
ences, we define the discounted rank-dependent utility (DRDU) of the technology
savings as:

DRDU 5 o
T

t50

1
1 1 d

� � t
12

o
8

a51
wa ⋅U(sat ), (3)

where sat is the expenditure savings at time t that varies depending on the future sce-
nario a. Savings each year is calculated as the difference between the expenditures in
water consumption with and without the technology; wa are the probability weights of
each scenario a. The utility function U(x) 5 ½(x1–r)/(1 – r)� is the constant relative
risk aversion utility function with coefficient r, and d is the subjective discount rate.
The weighted discounted utility is summed over the product’s life span (T). Using this
framework, we calculate the expected welfare gain (EWG) as the discounted certainty
equivalents (CE) of monthly savings:

EWG 5 o
T

t50

1
1 1 d

� � t
12

CEt, (4)

where CEt 5 ½(1 – r)⋅o8
a51wa ⋅U(sat )�1/(1–r).

We apply the expected welfare framework of equations (3) and (4) using the pa-
rameter estimates from Bernedo Del Carpio et al. (2022), the three sources of uncer-
tainty, and the new impact, life span, and installation cost assumptions described
above. Our revised welfare impact estimates indicate that technology adoption would
result in a net loss for the average household, implying that there is no product adop-
tion puzzle.

In other words, the calculated expected welfare gain of adopting the technologies is
negative (table 3, rows 5, 6, and 7), regardless of whether we assume risk neutrality or
whether we use the preference parameters of individuals or couples. In fact, any discount
rate above 13% will make the net present value under assumptions 1, 2, and 3 negative.7

Results are the same if we redo the calculations with the ATE estimated using only the
treated households that did not get a bonus.
7. An anonymous reviewer pointed out that our expected welfare measure may be in fact
overestimated because we do not take into account the fact that the new fixtures make cooking
and cleaning more time-consuming and showers less enjoyable for some households, especially
for the ones that eventually disadopted at least one of the technologies (see table 5).
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5. THE DIVERGENCE BETWEEN ENGINEERING

AND EXPERIMENTAL ESTIMATES

In this section, we consider possible explanations for the difference between the exper-
imental and engineering estimates (see table 4, panel B, and fig. 3).
5.1. Interference among Households

In the estimation of the ATE, we assumed that a household’s potential water use is
independent of the treatment status of other households (i.e., no interference among
units; stable unit treatment values). If that assumption were violated, the interpreta-
tion of the estimated treatment effect in figure 3 would change. One potential viola-
tion of the assumption would be when the control households, having observed the
technologies in treated households, subsequently adopt the technologies (or similar
ones). As reported in section 3, our random audit of a random sample of control
households found no evidence that control households adopted water-efficient tech-
nologies in the posttreatment period. Another potential form of interference in our
context is an effect of water conservation on flow and water availability in the gravity-
fed water systems. If the treatment reduced average water use among the treated
group, the flow and water availability in the community system may increase, thereby
potentially increasing the amount of water consumed among households in the control
group. However, in these systems the pressure on the pipes is mostly determined by
the position of the household in relation to the storage tank. Lower consumption by
treated households will affect the frequency by which tanks need to be filled, not water
availability. An exception could occur in scenarios of extreme water scarcity, but even
in this case the effect would not be different for treated and control group.
5.2. Actual Rather than Rated Performance Ratings

As is typical in engineering estimates, the BEE is based on the flow rate reported by
the manufacturer, which is assessed under a strict laboratory protocol. The actual flow
rate under naturally occurring field conditions, however, may differ because of field
attributes like the home’s water pressure, its water quality, and the way in which
the residents open the valves. Divergences between rated efficiency and field efficiency
of technologies have been recognized across many technology sectors (e.g., fuel effi-
ciency in vehicles and energy efficiency in HVAC systems and light bulbs; Nelsen
2015; Economist 2016). To adjust the BEE, two additional field measures on flows
were taken. First, in the control homes in which the field team evaluated the status
quo technology flows with the valves completely open, the team also measured flow
after asking residents to open the valves as they normally do in their daily activities.
Second, in 32 randomly selected treated households from the nine communities,
the team did the same with the new technologies during the first audit in 2015. Using
field data of actual flow rates of the new and old technologies as they are typically used
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by residents, we revise the BEE and obtain an expected 24.4% reduction in water
consumption.

5.3. Actual Rather than Assumed Installation Success

Engineers typically assume that the technologies are installed per the manufacturer’s
recommendations. In contrast, installations in technology adoption programs often
deviate from those recommendations (Domanski et al. 2014; Jessoe and Rapson
2014). In CATIE’s program, the team did not install some technologies because one
or more of the fixtures was missing, the plumbing could not be adapted to fit the
technology, or the head of household did not allow the field team to replace one of the
fixtures. To incorporate the installation success rates, the engineering estimate is calcu-
lated using equation (5).

o
3

i51
Wi ⋅Fi ⋅Ri, (5)

where i is the fixture category, W is the average percentage of water that runs through
fixture category i, F is the percentage change in the average field-measured flow rates with
andwithout technology installed in fixture category i, andR is the installation success rate
per fixture category i. The estimate implies a 22.1% reduction in water consumption.

5.4. Actual Rather than Assumed Water Uses Affected by Efficiency

Engineers typically assume that 100% of in-home water use is affected by changes in ef-
ficiency. When preparing food and beverages, however, people often use water in fixed
quantities; for example, to prepare a cup of rice, people use one cup of water. When wa-
ter is used in fixed quantities, the improvements in fixture efficiency will merely increase
the time required to fill the pot or glass. It will not reduce the amount of water used.We
could not find an engineering model that adjusts impact estimates for such uses. Based
on interviews, we assume that water used in fixed quantities in our sample comes from
kitchen fixtures during meal preparation. Because we could not find published estimates
of the percentage of water used as a cooking input in Central America, we estimate it
from a sample of 10 households from one of the study communities. The field team
asked female heads of these households, who traditionally do the cleaning and food
preparation in the study communities, to record their water consumption during break-
fast, lunch, and dinner on a weekend day. The women were trained to measure water
consumption for cooking and beverages using a 1-liter container, and to measure the
time spent on cleaning dishes and food and for any other activity using a chronometer.
The team also measured the flow rate in the kitchen faucet. The estimated average total
amount of kitchen water use from the 10 households is similar to the estimated total
amount of kitchen water use that we estimated from the larger sample of households
in the micrometer sample: 107 liters/day (vs. 124 liters/day in the micrometer sample).
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We obtain that the percentage of water consumed in the kitchen that is affected by ef-
ficiency is 85%.

Using the new input, and the estimates of actual field performance and installation
success (secs. 5.2 and 5.3), we obtain what we label the enhanced engineering estimate
(EEE). It is calculated as

o
3

i51
Wi ⋅Fi ⋅Ri ⋅Si, (6)

where S is the percentage of water consumed in the kitchen that is affected by efficiency
and equals one in the case of the shower head and the bathroom faucet. TheEEE implies
Figure 3. Reasons for divergence between engineering and experimental estimates of effect of
technology adoption on water use. The estimates are presented in terms of the estimated per-
centage reduction in monthly household water use from technology adoption. The BEE is de-
rived from a conventional engineering modeling approach supplemented with micrometer field
data on water consumption patterns. The EEE adjusts the BEE with refinements based on ad-
ditional field data (see secs. 5.2–5.4). The bars around the EEE and the experimental estimate
are 95% CIs.
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that the adoption of the technology is expected to reduce monthly water use by 20.5%, a
value that is still more than double the experimental estimate and one that yields an ex-
pected welfare gain of US$56.29.

5.5. Sampling Error of the Engineering Estimate

We could not find engineering reports on the impacts of input-efficient technologies
that report standard errors or other measures of uncertainty (see, e.g., the McKinsey re-
port on greenhouse gas emissions abatement cost curves, McKinsey and Co. [2007]).
The lack of such measures may stem from the common use of secondary, rather than
primary, data. In our study, however, the BEE and EEE are based on primary data.
To incorporate standard errors into the EEE, we randomly draw from our data the per-
centages of water flowing through each fixture and the flow rates with and without the
technology and then calculate an EEE. We do this draw-calculate procedure 1 million
times to generate a 95% confidence interval for the EEE. As can be seen in figure 3, some
of the remaining difference between the EEE and the experimental estimate may arise
from sampling variability, but there is still an economically relevant gap between the two
estimates. We next consider behavioral reasons for the gap.

5.6. Disadoption and Behavioral Responses to Changes in Product Attributes

Engineering estimates like the EEE are based on the assumption that, after a household
adopts a technology, it keeps it. Adoption, however, may be followed by disadoption.
For example, disadoption rates of efficient cookstoves and light bulbs have been reported
to be at least 32% and 63%, respectively (Figueroa 2016; Hanna et al. 2016). In our
RCT, treatment assignment led to adoption in all but six households. Yet, by the
end-line audit, 53.2% had disadopted one or more of the installed fixtures (fig. 4).8

The estimand that most closely matches the EEE is the ATE of keeping the fix-
tures installed until the 2016 end line. This estimand is a weighted combination of the
average treatment effect for the households that use the technologies for the entire
posttreatment period (perfect compliers) and the average treatment effects for the dif-
ferent types of compliers (disadopters at one month, disadopters at two months, etc.)
had they not disadopted the technologies.

Thus, whether disadoption can explain the divergence between the EEE and the
experimental estimate in figure 3 depends on the values of these unobservable average
treatment effects. We cannot directly estimate these average treatment effects in the
counterfactual world where households do not disadopt the technologies. However,
we can calculate an upper bound on the ATE had all households kept the technologies
8. The team was unable to audit all treated homes. For the values reported in fig. 4, we im-
pute the missing audit status (see app. A4). Considering only the values from homes observed in
both audits, 50.6% kept all technologies until end line, 36.6% disadopted at least one fixture
between midline and end line, and 12.8% disadopted at least one fixture before midline.
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Figure 4. Patterns of disadoption at midline (“early”) and end line (“later”). “Disadoption”
means the household uninstalled one or more of the installed fixtures. Only 8.1% of households
uninstalled all fixtures by midline, but 23.5% of households uninstalled all fixtures by end line.
installed until the end line. To do so, we assume no waning or growth in the monthly
average treatment effects within complier type. In other words, whatever the value of
the ATE is for a particular complier type in the first month after installation, we as-
sume the value is the same for all future months.

With this “no waning or growth” assumption, the estimated treatment effect for
the first month after installation captures the ATE for the posttreatment period
had all households been forced to use the technologies for the entire period. The es-
timated effect of the technologies in the first month after installation is a reduction of
2.95 m3, or 12.1% (see fig. 2 and table A2). Even if we were to use this estimated im-
pact to revise the expected welfare gain from technology adoption (table 3), the pre-
sent value of the gain in the model that incorporates field measures of time and risk
preferences remains negative (–US$16.76 to –US$15.67, depending on the discount
rate used).

In the midline audit, households self-reported the months that they disadopted fix-
tures. Only 2.4% reported disadopting one or more fixtures during the first month
after installation. If we make the extreme assumption that these households had dis-
adopted all of their fixtures immediately after installation (and thus were noncompliant
during the entire first month), the complier average causal effect for the first month is
–3.02 m3 (–2.95/0.98), which implies a 12.4% reduction.

If, in contrast to our assumption, the monthly average treatment effects were to wane
over time for one or more complier groups if they were forced to keep the technologies,
then our estimated ATE in the previous paragraph is an overestimate. If, however, the
monthly treatment effect were to grow over time for one or more complier groups, we
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would underestimate the contribution of disadoption. We have no reason to expect the
monthly treatment effect to grow over time.

Thus, based on these calculations, we believe that disadoption could explain, at
most, 29.0%9 of the gap between the EEE (–5.01 m3) and the experimental estimate
(–2.21 m3) in figure 3. We draw similar conclusions using alternative assumptions
(see app. A5). For instance, if we use only the control group and the no-bonus treated
group, disadoption could explain, at most, 36.7% of the gap.

Why might disadoption not explain a large part of the gap between the EEE and
the experimental estimate? The survey data suggest that one reason may be that house-
holds end up running the water longer to adapt to an undesirable, lower flow rate. In
the midline and end-line surveys, we asked households to compare the time it took
them to shower, wash dishes, and use the bathroom faucet with and without the
new technology and whether they liked the flow of the new technologies. More than
one-third of households reported running a fixture for a longer time to complete an
activity in the post-installation period compared to the pre-installation period. More-
over, there appears to be a rank ordering of households running the fixtures longer and
their perception of the desirability of the flow rates. In comparison to the perfect complier
Table 5. Perceptions of Technologies by Household Type (%)

Variable Perfect Compliers Late Disadopters Early Disadopters

Audit 2015

Activity takes longer:
Bathroom faucet 8 8 11
Kitchen faucet 27 31 31
Shower head 36 42 56

Person likes flow rate:
Bathroom faucet 99 99 95
Kitchen faucet 95 92 56
Shower head 94 90 60

Audit 2016

Activity takes longer:
Bathroom faucet 10 19 18
Kitchen faucet 27 36 48
Shower head 36 48 59

Person likes flow rate:
Bathroom faucet 98 92 79
Kitchen faucet 95 81 59
Shower head 92 75 56
9. We calculate the por
(–5:01 – (–2:21))� 5 0:29
tion of the gap explaine
.

d by disadoption as ½(
–3:02 – (–2:21))/
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group, the late disadopters reported lower rates of liking the flow of all the new tech-
nologies and higher rates of taking longer to do their household activities (table 5,
cols. 2 and 3). The early disadopter households reported even higher rates of keeping
the faucets open for longer periods of time and lower percentages of households that
like the flow rate (col. 4 in table 5). Moreover, during the 2015 audit, when we asked
early disadopters the reasons why they uninstalled the technologies, the majority re-
sponded that the flow rate was too slow.

In other words, to achieve greater water efficiency, the fixtures slow the flow of wa-
ter exiting the fixture, and some households respond by keeping the faucet open for a
longer period (e.g., to properly clean dishes and clothing). This behavioral response is,
on the surface, like the conventional rebound effect extensively studied by economists.
Yet its source seems to be fundamentally different: the behavioral response arises be-
cause of an undesired change in a product attribute that accompanies the improvement
in efficiency. Less than 1% of the respondents reported an increase in the frequency of
using water-related services. Although a conventional rebound effect cannot be ruled out
with the information we have at hand, the behavioral response to an undesired change in
a product attribute is the most plausible behavioral reason we have uncovered for the
remaining divergence between the EEE and the experimental estimate.10

6. CONCLUSIONS

In a 2014 study on American’s perceptions of water use, Attari (2014, 5129) notes that
“when asked for the most effective strategy they could implement to conserve water in
their lives, or what other Americans could do, most participants mentioned curtailment
(e.g., taking shorter showers, turning off the water while brushing teeth) rather than ef-
ficiency improvements (e.g., replacing toilets, retrofitting washers). This contrasts with
expert recommendations.” Interpreting this gap between user and expert perceptions as
arising from misinformed users, the Attari writes that “well-designed efforts to improve
public understanding of household water use could pay large dividends for behavioral
adaptation to temporary or long-term decreases in availability of fresh water.”Our study
results suggest that consumer misinformation may not be the main driver of low adop-
tion rates.
10. An alternative reason could be a version of moral licensing, whereby the adoption of water-
efficient technologies allows a household to maintain a “conservationist” image while refraining
from other water conservation behaviors in which it may have otherwise engaged (e.g., turning fix-
ture off when soaping up). For this channel to be active, households must have engaged in these
conservation behaviors for prosocial or moral reasons. We cannot eliminate this rival explanation
with our data, but the 2013 survey conducted byCATIE, which included the nine communities of
our study, asked households whether they had acted in response to warmer and longer summers in
the previous five years and, if so, how: less than 5% self-reported taking efforts to reduce their wa-
ter consumption and, even for this small subgroup, it is unclear if they were motivated by prosocial
or moral reasons.
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We contribute to the literature on the economics of input efficiency by leveraging a
randomized experiment on the field performance of water-efficient technologies and
detailed primary data on preference parameters of potential adopters. We estimated
both the effect of water-efficient technologies on water use 16 months after adoption
and the welfare gains to adopters.

Consistent with prior work in the energy context, the ex post experimental estimate
is much smaller than an ex ante engineering estimate: three times smaller. We attri-
bute the difference between the experimental and engineering estimates to divergences
between expected and actual field performances of the technologies and to postadoption
behavioral responses of the adopters.

Part of the divergence between expected and actual field performance arose because
the manufacturer-rated performance did not match the field performance, a problem
that has been reported in other sectors (see, e.g., popular news media articles on exag-
gerated rated performances in the vehicle and lighting sectors; Nelsen 2015; Economist
2016; Singer 2019). Part of the divergence arose because of differences in assumed in-
stallation success rates and actual installation success rates, a phenomenon that has also
been reported in other sectors (e.g., Domanski et al. 2014). The remaining gap between
expected and actual performance may be specific to the water context: some household
water uses require fixed amounts of water and thus are not affected by improvements in
efficiency.

However, even after using our own field data to correct the performance and in-
stallation assumptions, the engineering estimate is still almost double the experimental
estimate. Some of the remaining divergencemay be due to sampling error or disadoption
of the technologies, but even after adjusting for those features of the data, a gap remains.
Using survey data, we find suggestive evidence of a behavioral reason for the gap: some
households respond to the lower flow rates of the efficient technologies by running the
water longer (e.g., to properly wash dishes); in other words, they react to changes in tech-
nology performance that are concomitantwith efficiency improvements. This reaction to
a change in a basic feature of the technology (i.e., its low flow) is different from a rebound
effect, which is a reaction to lower effective prices of showering or doing the dishes. No-
tably, this suggests that even if the magnitude of rebound effects were exaggerated in the
energy literature, as argued by some economists (Gillingham et al. 2013), there are still
reasons to be concerned that engineering claims about the impacts of input efficiency on
input use may be exaggerated and policymakers may do better by relying on price to re-
duce input uses.

Moreover, we find no evidence of an “efficiency paradox.” Given the modest
postadoption average reduction in water use and the large average household discount
rates, the average adopter would experience negative returns from adopting the tech-
nologies. Thus, to explain low product adoption rates at our study site, we do not need
to seek psychological reasons, such as present bias or status quo bias, or economic rea-
sons, such as market access or credit constraints (such reasons could still be important
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in some contexts; e.g., credit constraints in low-income countries; Berkouwer and
Dean 2022).

The size of the gap that we calculate is similar to the one found in several studies in
the context of energy in low- and middle-income countries. This is the first estimate in
the context of water, and further studies are needed.We believe that the reasons for the
divergence that we uncover would also appear in other resources and in regions where
other water-efficient technologies could be adopted (washing machine, dishwashers, toi-
lets). However, their relative importance might differ depending on disadoption rates,
performance, fixed water use, or installation rates. Moreover, applying our approach
to calculate the welfare gains with more realistic assumptions and time and risk prefer-
ences would generate lower welfare measures that could explain the low adoption rates
that we see for these technologies.

In summary, claims of a “win-win” outcome associated with the adoption of input-
efficient technologies in our study context are not supported by the data. Whether the
installation costs and the modest water use reductions warrant government subsidies
for technology adoption to reduce extraction on common pool aquifers in the region is
a subject for future research. A social cost-benefit analysis that incorporates the costs
of externalities associated with groundwater pumping may support the use of such
subsidies. However, relying on private motives alone to reduce pressures on the aqui-
fers is unlikely to be successful.
APPENDIX

A1. Power Analysis

Our original power analysis was designed for a nonzero contrast of the means across the
three treatment arms with equal sample sizes in each arm (control, bonus, no bonus).
This contrast was chosen under the assumption that, in a related study on whether
the exposure bonus induced lower disadoption rates (a different study from the one pre-
sented here), we may be asked to perform that contrast. We sought to detect a 6%
change in water use from exposure to the treatment (about one-quarter to one-fifth
of the expected effect based on engineering predictions). Based on May–October
2014 water billing data, we assumed that the control group would consume, on average,
22.5 m3 per month (SD 5 13:9) and the two treated groups would each consume, on
average, 21.5 m3 per month (SD 5 13:9). We ran the power analysis using the soft-
ware program PASS and the ANCOVA method. The required total sample size
was 1,128. This power analysis is reported in the AEA Registry. The CATIE team
had acquired data from 10 communities (N 5 2,250 water customers). To save on field
expenses (particularly travel time), the team decided to drop one of the small commu-
nities at random because the remaining nine communities could provide enough house-
holds to meet the target sample size. A community with 72 customers in 2014 was
dropped (El Roblar). After randomization and installation, we ran a power analysis
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by simulation using pretreatment data from the nine communities and the random-
effects estimator that we planned to use to analyze the posttreatment data. The simu-
lation used monthly water use data from May 2013 to October 2014. The simulated
experiment’s pretreatment period was from May 2013 to May 2014 and the posttreat-
ment period was from June 2014 to October 2014. The simulation assumed a sample
size of 1,310 households spread over the nine communities in proportions similar to
their distribution in the original data set. The households in each community were ran-
domly assigned into treatment and control groups, with the treatment group twice the
size of the control group. Using our random-effects estimator with community and
month dummy variables, we performed 1,000 estimation replications for each water re-
duction effect size ranging from 1% to 10%. Setting the Type 1 error rate to 5%, we gen-
erated a power curve that shows the estimated power to detect varying levels of effect
sizes (see fig. A1). The power simulation implies that, with 80% power, our design
can detect a treatment effect of a reduction in water use of about 6%–6.5%.

Figure A1. Power analysis curve

A2. Calculations of Returns to Technology Adoption Based

on Basic Engineering Estimate (BEE)

We calculate costs and benefits by month (t), where t 5 0 is the moment at which a
household installs the water-efficient technologies. We assume that each household
installs the technologies in an hour, and we value that hour by the minimum wage
for unskilled workers in 2015: US$2.28 (Ministerio de Trabajo y Seguridad Social
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2015). The purchase price for the set of technologies that could be deployed in the
average home is assumed to be the retail price in one of the Costa Rican stores that
sold the products in 2015: US$23.71. Thus the total installation cost is assumed to
be US$25.99, which is an optimistic assumption because it assumes trouble-free instal-
lation and sufficient plumbing skills to avoid having to hire a professional plumber. Later
in the main text, we relax the trouble-free installation assumption and, using detailed
data on installation costs, we adjust the installation cost to US$36.23. To calculate
the benefits from technology adoption, we must define the path of monthly water
use with and without the new fixtures for the expected life span of the fixtures. We
assume that the new fixtures all have the same expected life span and, to start, we as-
sume that this life span matches the manufacturer’s warranty: 10 years. We relax this
assumption in subsequent analyses.We assume that, in the absence of the new fixtures,
a household would continue using the status quo technologies. To define monthly
water use in the absence of the new fixtures (i.e., in the presence of the status quo
technologies), we assume that water use in a particular month for each household in
the control group matches the average water use during the same month for the period
2013–16 (except for October, November, and December, for which the period of avail-
able data is 2013–15). To define monthly water use in the presence of the new technol-
ogies, we assume that the technologies reduce the status quo monthly water use by the
BEE and we assume that the technologies are installed at the beginning of June, roughly
the timing of installation in our experiment (i.e., the entire month of June is affected by
the new technologies). To measure monthly expenditures based on water use with and
without the technologies, we use the 2015 price schedules in each community. We as-
sume that tariffs increase every three years by 20.85%, which is the average price increase
in over 100 CBWMOs in the province during the 2015–17 period.We believe that this
growth rate is likely to be an overestimate of future price changes, making the returns to
technology adoption look larger than they are. According to AyA staff, this period was
an unusually active period of tariff increases encouraged by the government.We still pre-
fer to use this estimate rather than a different one because it is based on actual tariff data
of the region.

A3. Lead-Lag Specification from Figure 2

To estimate the monthly effects of the technologies on water use, we estimate a ran-
dom effects model with dummy variables that indicate, for treated homes, the month
of technology installation (May or June 2015, M0i) and each month before and after
installation from May 2014 until September 2016 (Mpi):

cit 5 β0 1 o
16

p5–13
gpi ⋅Mpi 1 communityk 1 install teamj 1 montht 1 ei 1 mit, (A1)

where cit is the monthly water consumption in the ith household in calendar month t.
In this specification, the parameter gpi can be interpreted as the effect of the treatment
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on monthly water consumption for each month before or after installation. As in the
main specification (eq. [2]), we also added dummy variables for the blocking variables
(community and installation team) and for the month, and we assume that households
are untreated in the month of installation (i.e., posttreatment period starts at M1).
Table A2 reports the results from this specification.
A4. Imputing Missing Audit Observations for Figure 4 in Main Text

The field teams were unable to contact and enter the homes of every treated house-
hold to do the audit: 10.9% of the households were unaudited only in 2015, 3.5% were
unaudited only in 2016, and 2.5% were unaudited in both years. Failure to audit house-
holds typically occurred because no one was home or, less commonly, because a woman
was home alone and did not feel comfortable letting the team into the house. House-
holds that had at least one failed audit had pretreatment water use of 22.08 m3/month
(SD 5 17:23) versus 25.43 m3/month (SD 5 16:32) in fully audited households.
Using only the data from homes that are in both audits, we observe that 51% kept
all technologies until end line, 37% disadopted at least one technology between midline
and end line, and 13% disadopted at least one technology before midline. To impute the
missing audit status at midline for households unaudited in 2015 and audited in 2016
(10.9% of treated households), we make two assumptions about this subgroup:

1. If the household was observed with the technology in 2016 (33%), we
assume that they had the technology in 2015 at the time the audit took
place. In other words, we assume that no one uninstalled the technology
in 2015 and then reinstalled it later. We believe this assumption is justi-
fiable because the surveys imply that disadoption was driven by dissatis-
faction with the technology and, in the sample of households that are in
both audits, we observe only 15 households in which a fixture technology
was uninstalled by the 2015 audit and then reinstalled by the 2016 audit.

2. If the household was observed without the technology in 2016 (67%),
we assume that they were without the technology in 2015 at the time
the audit took place. With this assumption, we may mistakenly classify
some late disadopters as early disadopters.

For households audited in 2015 and unaudited in 2016 (3.5% of treated house-
holds), we make two assumptions about this subgroup:

3. If the household was observed without the technology in 2015 (3%), we
assume that they were without the technology in 2016 at the time the
audit took place. In other words, as in assumption 1, we assume that no
one uninstalled the technology in 2015 and then reinstalled it later. The
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same justifications that make assumption 1 credible are applicable to
assessing the credibility of assumption 3.

4. If the household was observed with the technology in 2015 (97%), we
assume that they were without the technology in 2016 at the time the
audit took place. With this assumption, we may mistakenly classify a
Perfect Complier as a Late Disadopter.

For households unaudited in both years (2.5% of treated households), we assume
that they are missing independent of potential outcomes and exclude these households
from the imputation procedure. Although this assumption is strong, the proportion of
the sample in this subgroup is small and, if anything, the assumption favors the returns
to technology adoption because these households tend to be low water users (often
because the homes are vacant). The treatment effect would be expected to be lower
among low water users, and that expectation is consistent with the estimates from
a quantile regression estimator: the estimated treatment effect is lowest for the bottom
quantile. Note that the analysis in section 5.6 of the main text does not rely on these
imputations. Only the values in figure 4 rely on them, which is used simply to give the
reader a sense of the disadoption patterns in the experiment.

A5. Alternative Calculations of the Effect of Disadoption on the Gap

between the EEE and the Experimental Estimate

In the main text, we calculated disadoption’s potential contribution to the gap between
the EEE and the experimental estimate using the estimated treatment effect (ITT)
from the first month after installation, which comes from the lead-lag specification
in section A3. Based on the assumptions we made, we interpreted that estimated effect
as reflecting an upper bound on the ATE had we been able to force all households to
keep their technologies until the end line. In the main text, we also divided that value
by an upper bound estimate of noncompliance in the first month to calculate a slightly
larger complier average treatment effect for the first month.

Using the same calculation method but only the control group and the treated
households that did not get a bonus, we obtained similar results as indicated in the
main text. The estimated treatment effect (ITT) from the first month after installation
is –3.14 m3 which implies a reduction of 12.8%. In this group, 3.7% homes disadopted
one or more fixtures during the first month after installation. If we assume that these
households disadopted the fixtures immediately after installation, then the complier
average causal effect for the first month is –3.26 m3, which corresponds to a 13.3% re-
duction. Based on these calculations, disadoption could explain, at most, 36.7% of the
gap between the EEE and the experimental estimate.

Another way to calculate disadoption’s potential contribution to the gap uses more
months of data and yields a similar result to the one reported in the main text. This cal-
culation starts with the estimated monthly ITT for the first four months after installation:
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–2.56 m3/month (estimated from the lead-lag specification in sec. A3). As noted in the
main text, in the midline audit, households self-reported the month after installation
that they disadopted a fixture for the first time. Those data imply that 18 homes
disadopted during the first month (2.4%), 18 homes disadopted during the second
month (2.4%), 18 homes during the third month (2.4%), and 24 homes during the
fourth month (3.2%). In other words, 10.4% of households disadopted at least one fix-
ture during the first four months after installation. Based on a random audit of control
households (sec. 3, main text), we assume no control households adopted the technol-
ogies. Next, we make two assumptions:

• No partial disadoption. This implies that “technology use in month j” is a
binary variable—a household either uses all the technologies for the entire
month or they use none of the technologies for the entire month. Implicit
in this assumption is a “no return” assumption: once a household disadopts
a technology, they do not re-adopt it later (an assumption that seems
plausible given that our survey data indicated only a few cases of such a
pattern).

• No heterogeneity in treatment effects across user types and no waning or
growth in the monthly treatment effect. The “no waning or growth” part of
the assumption is explained in the main text. The no heterogeneity in
treatment effects across user types is a new assumption that makes the
calculations below easier. If, instead, the households that disadopted earlier
had smaller treatment effects than households who disadopted later, we
would overestimate the target ATE. If the pattern of treatment effects were
the opposite, we would underestimate the target ATE (it is unclear why
households with the largest water savings would be the first to disadopt).

We also assume that randomization of treatment is a valid instrumental variable. In
other words, we make two additional assumptions:

• Monotonicity. The duration of technology use would be as long or longer
under assignment to the treatment condition as under the control
condition.

• Excludability. Randomization has no effect on potential water use except
through its effect on treatment status.

We believe these latter two assumptions are plausible in our context given the nearly
100% compliance with treatment assignment (installation), the small size of the com-
pliance bonus for the bonus treatment arm (∼ US$40), and the fact that both treat-
ment and control households heard the same script about water efficiency prior to ran-
domization. With these assumptions, we can calculate a complier average causal effect
for the four months after installation (a local average treatment effect):
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CACE4m 5 –
2:56⋅4

0:024⋅010:024⋅110:024⋅210:032⋅310:896⋅4
5 –2:73: (A2)

This estimand is the average return to a month of technology use among the com-
pliers (i.e., households who use the technology for as long as they did in the experi-
ment when randomized to the treatment group and do not use it otherwise). Given
our “no waning or growth” assumption, we can infer that this value, which is similar
to the value in the main text, is the average monthly reduction in water use that one
would observe if one could force all households to keep their technologies. In the
calculation above, we implicitly make one additional assumption that applies to the
households missing from the midline audits (sec. A4). Even if we used the imputation
rules from the section A4, we cannot identify which month during the first four
months a missing household may have disadopted the technologies. Given that the im-
putation had little effect on the estimated percentages in figure 4, we instead assume
that had we been able to audit these homes, we would have seen disadoption in pro-
portion to what we saw in the audited homes (e.g., 2.4% of the missing households
would have disadopted their first fixture in the first month). Alternatively, we could
make the most conservative assumption one could make to address the missing audits:
assume all missing households disadopted all of their technologies in the first month.
Under this alternative assumption, we update the disadoption patterns: 15.5%
disadopted during the first month ([181116]/864), 2.1% during the second month,
2.1% during the third month, and 2.8% during the fourth month (i.e., 77.5% are per-
fect compliers rather than 89.6%). With these values, we can compute an upper bound
on the CACE at midline:

CACEUB
4m 5–

2:56⋅4
0:155⋅010:021⋅110:021⋅210:028⋅310:775⋅4

5 –3:16: (A3)

In other words, if we make the strong assumption that the missing midline audit
households all disadopted immediately after installation, disadoption could explain
up to a maximum of 33.8% of the gap between the experimental estimate and the
EEE in figure 3.

If we apply this same method and only consider the treated households that did not
receive the bonus, we reach a similar conclusion. In this case, the estimated monthly
ITT for the first four months after installation is –2.44 m3/month. In this group,
13 homes disadopted at least one technology during the first month (3.7%), 14 homes
disadopted during the second month (3.9%), 11 homes during the third month (3.1%),
and 18 homes during the fourth month (5.1%). Using these values we calculate the com-
plier average causal effect for the four months after installation: CACE4m 5 –2:69. As-
suming that all missing households disadopted the technologies in the first month, the
complier average causal effect becomes CACEUB

4m 5 –3:23. This means that dis-
adoption could explain up to 35.8% of the gap.



Table A1. Installation

Fixtures Available Shower Kitchen Aerator Bathroom Aerator

Number of households with 0,
1, or 2 fixtures available:

0 27 214 403
1 791 640 426
2 52 16 41

Number of households with 0,
1, or 2 technologies installed:

0 72 284 467
1 760 575 383
2 38 11 20

Installation success rate 93% 89% 83%
Note. Installation success rate is the proportion of fixtures in treated households where the field team
was able to install the new technologies. The percentages in the last row are higher than the percentages in
the penultimate row because, in homes with two fixtures of a particular type, the field team could success-
fully install the new efficient technologies on one of the fixtures but not the other. Only six households had
at least one fixture but no successful installations.

Figure A2. Estimated treatment effects per month, whole sample and no bonus (m3)



Table A2. Estimated Treatment Effects of Technology Adoption on Water Consumption
(m3/month) per Month

95% Confidence Interval

Month Coefficient Lower Bound Upper Bound

–13 1.4984 –.5371 3.5338
–12 .9165 –.8812 2.7142
–11 .6056 –1.0891 2.3004
–10 .9025 –.7590 2.5640
–9 1.1113 –.5414 2.7640
–8 .0562 –1.4945 1.6069
–7 –.4269 –1.9132 1.0593
–6 .5934 –1.0362 2.2230
–5 –.4797 –2.3229 1.3635
–4 –.4591 –2.3310 1.4127
–3 .8055 –1.1379 2.7489
–2 –.5472 –2.3988 1.3044
–1 1.2357 –.5627 3.0340
0 –.5069 –2.1824 1.1686
1 –2.9506 –4.5784 –1.3228
2 –3.1394 –4.7887 –1.4901
3 –1.9628 –3.5622 –.3634
4 –2.1903 –3.7623 –.6182
5 –1.4597 –3.0194 .1000
6 –1.4609 –3.1442 .2224
7 –2.5070 –4.3102 –.7039
8 –1.0123 –2.9673 .9426
9 –.8917 –2.8535 1.0702
10 –1.7226 –3.6463 .2011
11 –1.6398 –3.4237 .1441
12 –2.1233 –3.7696 –.4770
13 –1.3175 –2.9845 .3495
14 –1.4867 –3.2039 .2305
15 –2.5439 –4.2331 –.8546
16 –.2454 –2.7569 2.2661
Note. Month 0 is the month of technology installation; 95% confidence intervals are constructed from
robust standard error estimates clustered at household level. The treated units in the thirteenth month be-
fore treatment comprise only the June 2015 installations. The treated units in the sixteenth month after
comprise only the May 2015 installations.
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